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We calculate the surface phase diagram of a two-dimensional hard-rod fluid confined between two hard
lines. In the first stage we study a semi-infinite system consisting of an isotropic fluid in contact with a single
hard line. We have found complete wetting by the columnar phase at the wall-isotropic fluid interface. When
the fluid is confined between two hard walls, capillary columnar ordering occurs via a first-order phase
transition. For higher chemical potentials the system exhibits layering transitions even for very narrow slits
�near the one-dimensional limit�. The theoretical model used was a density-functional theory based on the
fundamental-measure functional applied to a fluid of hard rectangles in the restricted-orientation approximation
�Zwanzig model�. The results presented here can be checked experimentally in two-dimensional granular
media made of rods, where vertical motions induced by an external source and excluded volume interactions
between the grains allow the system to explore those stationary states which entropically maximize packing
configurations. We claim that some of the surface phenomena found here can be present in two-dimensional
granular-media fluids.
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I. INTRODUCTION

The effect of fluid confinement on phase transitions is
nowadays an active line of scientific research due to direct
application of the theoretically predicted surface phase dia-
grams in the nanotechnology industry. Confining simple flu-
ids, such as hard �1,2� or Lennard-Jones �3� spheres, in a
narrow slit geometry, results in a rich phase behavior, which
has recently been studied in detail. Liquid crystals confined
in nanopores are another typical example of systems with
important applications in the industry of electronic devices.
For this reason they have been extensively studied using the-
oretical models based on density-functional theory. In par-
ticular, capillary phase transitions exhibited by a nematic
fluid confined between hard walls �4,5�, or walls favoring a
particular anchoring �6�, have been predicted. When nonuni-
form liquid-crystal phases, such as the smectic phase, are
included in the study of confined systems, the resulting sur-
face phase diagrams display a rich phenomenology, which
includes wetting transitions, the appearance of smectic de-
fects �7�, and layering transitions �8�.

The effect of confinement on two-dimensional fluids is
also an interesting topic of research. Langmuir monolayers
of lipids on the surface of water have been extensively stud-
ied in the last 100 years �9�, and the discovery of structures
and phase transitions in these systems has experienced a dra-
matic evolution driven by new experimental techniques.
Now it is possible to confine these two-dimensional systems
by external potentials and study the influence of the confine-
ment on the molecular packing of surface monolayers.

Another paradigm of two-dimensional �2D� systems
where the confinement plays an important role is the packing
structures formed by particles in granular media �10�. The
crystallization of a quasi-two-dimensional one-component

granular-disk fluid has recently been studied experimentally
�11�. It was found that the properties of the crystal structure
obtained �such as packing fraction, lattice structure, and Lin-
denman parameter� coincide with their counterparts obtained
from Monte Carlo �MC� simulations of a hard-disk fluid.
Recent experiments have found nonequilibrium steady states
in a vibrated granular rod monolayer with tetratic, nematic,
and smectic correlations �12�. Some of these textures are
similar to the equilibrium thermodynamic states of two-
dimensional anisotropic fluids resulting from density-
functional calculations �13� and MC simulations �14�. It was
shown by several authors that the inherent states of some
frozen granular systems can be described by equilibrium sta-
tistical mechanics �15�. Also, an experimental test of the
thermodynamic approach to granular media has recently
been carried out �16�. Confining two-dimensional granular
rods in different geometries �circular, rectangular, etc.� re-
sults in the spontaneous formation of patterns, with different
orientationally ordered textures and defects next to the con-
tainer �17�. The authors of Ref. �18� have carried out MC
simulations of a confined hard-disk fluid. They have found
that the crystal phase fails to nucleate due to formation of
smectic bands when the system is confined �18�. It would be
interesting to devise an experiment with confined granular
disks with the aim of comparing the properties of the non-
uniform stationary states with those obtained from the statis-
tical mechanics applied to the hard-disk fluid.

The main purpose of this article is the study of a confined
two-dimensional hard-rod fluid. We are interested in the cal-
culation of the surface phase diagram of a hard-rectangle
�HR� fluid confined by a single or two hard lines. We can
think of a HR fluid as an experimental realization of a system
of hard cylinders confined between two plates at a distance
less than twice the cylinder diameter. We suggest that some
of the surface phase transitions obtained here by applying the
density-functional formalism to a confined two-dimensional
HR fluid should be similar to the steady states of confined*Electronic address: yuri@math.uc3m.es
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granular rods. Some experiments are required to verify this
hypothesis.

The paper is organized as follows. In Sec. II we present
the theoretical model: the fundamental-measure density
functional applied to a HR fluid in the restricted-orientation
approximation. This section is divided into two subsections.
In the first the model is particularized to the study of the bulk
phases, while in the second part the theoretical expressions
used in the calculations of the thermodynamic and structural
properties of the interfaces are presented. The results are
presented in Sec. III. First we study the bulk phase diagram
of a HR fluid with aspect ratio equal to 3, and then the
resulting surface phase diagrams of a single wall-HR fluid
interface and of the fluid confined between two hard lines are
presented. Some conclusions are drawn in Sec. IV.

II. THEORETICAL MODEL

In this section we introduce the theoretical model used in
the calculations of the bulk and interface equilibrium phases.
To study highly inhomogeneous phases such as those result-
ing from the confinement of a fluid in a narrow-slit geometry
or a solid phase with a high packing fraction, we have used
the fundamental-measure theory �FMT� applied to an aniso-
tropic fluid of hard rectangles. It is well known that this
formalism presents a great advantage over other techniques
when dealing with highly inhomogeneous phases and that
this is mainly due to the fact that a basic requirement to
construct the FMT density functional is that it conform with
the dimensional crossover criterion �19,20�. To implement
the calculations we have used the restricted-orientation ap-
proximation, where the axes of the rectangles are restricted
to align only along the coordinate axis x or y. Thus, the
whole system is described in terms of density profiles ���r�
��=x ,y�.

While the ideal part of the free-energy density in reduced
thermal units has the exact form

�id�r� = �
�

���r��ln ���r� − 1� , �1�

the FMT interaction part of the 2D HR fluid is approximated
�20� by

�exc�r� = − n0�r�ln�1 − n2�r�� +
n1x�r�n1y�r�

1 − n2�r�
, �2�

where the weighted densities n�’s are calculated as

n��r� = �
�=x,y

��� � ��
�����r� �3�

and where the symbol � stands for convolution—i.e.,
�����

���=�Vdr����r����
����r−r��. The weights ��

��� are the
characteristic functions whose volume integrals constitute
the fundamental measures of a single particle �the edge
lengths and surface area�. They are defined as
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− �x�	����

y

2
− �y�	 , �7�

where �	
� =�+ �L−���	�, with L and � the length and width

of the rectangle and �	� the Kronecker function, while ��x�
and ��x� are the Dirac delta and Heaviside functions, respec-
tively.

A. Bulk phases

To calculate the bulk phase diagram we need to minimize
the Helmholtz free energy functional 
F �
���r���
=�dr��id�r�+�exc�r�� with respect to the density profiles
���r�. These density profiles have the symmetries corre-
sponding to the equilibrium phases, which can be the isotro-
pic or nematic fluids, the smectic phase �with particles ar-
ranged in layers with their long axes pointing perpendicular
to the layers�, the columnar phase �with long axes parallel to
the layers�, plastic solid �particles located at the nodes of the
square grid with averaged orientational order parameter over
the cell equal to zero�, and oriented solid �with both transla-
tional and orientational order�. To take proper account of all
these possible symmetries, we have used a Fourier-series ex-
pansion of the density profiles:

���r� = �0x� �
k=�0,0�

N

�k1,k2

��� cos�q1x�cos�q2y� , �8�

where we defined k��k1 ,k2� �with N=N�1,1��, q1

=2�k1 /dx and q2=2�k2 /dy are the wave vector components
parallel to x and y axes, respectively, and dx and dy are the
periods of the rectangular grid along these directions. �k1,k2

���

are the Fourier amplitudes of the density profile of the spe-
cies � with the constraint �0,0

��� =1. �0 is the average of the
local density over the cell, while x� is the cell-averaged oc-
cupancy probability of species �. The Fourier series is trun-
cated at that value N which guarantees that �N,N

��� �10−7. With
this parametrization the weighted density can be calculated
explicitly as

n��r� = �0�
�,k

x��k1,k2

��� �̂�
����k�cos�q1x�cos�q2y� , �9�

where �̂�
����k� are the Fourier transforms of the correspond-

ing weights, which have the form

�̂�
�0��k� = 0�q1��

x /2�0�q2��
y /2� , �10�

�̂�
�1x��k� = ��

x1�q1��
x /2�0�q2��

y /2� , �11�

�̂�
�1y��k� = ��

y0�q1��
x /2�1�q2��

y /2� , �12�

�̂�
�2��k� = a1�q1��

x /2�1�q2��
y /2� . �13�
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Here a=L� is the surface area of the particle, and 0�x�
=cos x and 1�x�=sin�x� /x. We have selected the orienta-
tional director parallel to y. Thus, the equilibrium smectic
�columnar� phase should be found by minimizing the free
energy with respect to the Fourier amplitudes �0,k

��� ��k,0
����, the

smectic �columnar� period dy �dx�, and the order parameter
QN� �−1,1� �related to the x�’s through the relations x,�

= �1±QN� /2 where the symbols , � stand for particle align-
ment along y and x, respectively�. For uniform phases
��k1,k2

��� =0∀ �k1 ,k2�� �0,0�� QN coincides with the nematic
order parameter. The solid phase is to be found by minimiz-
ing the free energy with respect to all the Fourier amplitudes
�k1,k2

��� , the crystal periods dx and dy, and the order parameter
QN in the case of an orientationally ordered solid. To mea-
sure the packing structure and the orientational order of the
bulk phases we use the local density and order parameter
profiles ��r�=�����r� and Q�r�= ��y�r�−�x�r�� /��r�, respec-
tively.

B. Interfacial phases

As we want to study the hard-wall–fluid interface or the
HR fluid confined in a slit geometry, we have introduced the
following external potential:

V��x� = �� , x � ��
x /2,

0, x � ��
x /2,

� �14�

for the semi-infinite system, and

V��x� = �� , x � ��
x /2 and x � H − ��

x /2,

0, ��
x /2 � x � H − ��

x /2,
� �15�

for the slit geometry, where H is the slit width and the nor-
mal to the wall was selected in the x direction. Note that this
external potential represents a hard line which excludes the
center of mass of particles at distances less than their contact
distances with the wall. In this sense we can say that the
external potential favors parallel alignment at the wall. This
is in contrast with the favored homeotropic alignment usu-
ally considered in several studies of three-dimensional liquid
crystals confined by a single or two walls �in particular that
of Ref. �8��.

The one-dimensional equilibrium density profiles ���x�
were found by minimizing the excess surface free energy per
unit length,

� �� dx���x�



+ P − �
�

���x��	� − V��x��� , �16�

where 
= �kBT�−1, ��x�=�id�x�+�exc�x�, and 	� are the
chemical potentials of species � fixed at the bulk fluid-phase
value at infinite distance from the wall, while P is the fluid
pressure. The chemical potential of the bulk fluid phase is
calculated, as usual, as 	=��x�	�, with x� the molar frac-
tions of species �. If the bulk phase is an isotropic fluid, then
x�=1/2 and 	�=	, ∀ �.

To measure the degree of interfacial order, we will use the
adsorption of the density profile, defined as �=�dx���x�
−�����, and the order parameter profile Q�x�.

Expression �16� coincides with the definition of the sur-
face tension of the wall-fluid interface for the semi-infinite
case, which is approximately equal to half the excess surface
free energy for the slit geometry when the wall distance H is
large enough to accommodate both interfaces.

To minimize the functional given by Eq. �16�, we have
discretized space in the x direction and minimize � with
respect to ���xi� �xi� �x0 ,xN�� using the conjugate-gradient
algorithm.

III. RESULTS

In this section we present the main results obtained from
the application of the theoretical model just described to the
study of surface properties of a 2D HR fluid. Particles were
chosen to have aspect ratio ��L /�=3. This aspect ratio is
chosen because one of the aims of the present work is the
study of layered phases confined by one or two walls. As we
will show below for �=3 the stable phase is the columnar
layered phase.

In the first subsection we will summarize the results ob-
tained in the calculation of the bulk phase diagram of this
system, while in the second subsection we will focus on the
study of the surface phase diagram.

A. Bulk phase diagram

We have minimized the free-energy density of the HR
fluid, defined as ��V−1�Vdr��id�r�+�exc�r��, with respect
to the Fourier amplitudes, periods, and mean occupancy
probability, as described in detail in Sec. II A. The results are
plotted in Fig. 1, where the free-energy densities of all the
stable and metastable phases found are plotted as a function
of the packing fraction �=�0a. We have found, apart from
the usual isotropic �I� and nematic �N� phases, two different
smectic phases �Sm1 and Sm2�, a plastic solid �PS�, perfectly
oriented solid �OS�, and finally the columnar phase �C�,
which is the stable one in the whole range of packing frac-
tions explored.

The coupling between the spatial and orientational de-
grees of freedom of the particles results in the presence of
phases �stable or metastable� with different symmetries. In
Fig. 2 we have sketched some of the particle configurations
corresponding to phases with columnar �a�, smectic-1 �b�,
smectic-2 �c�, and plastic solid �d� symmetries found from
the numerical minimization of the density functional. The
directions of spatial periodicities of each phase are depicted
in the figure.

In Fig. 3�a� we have plotted the density and order-
parameter profiles of the coexisting columnar phase. The co-
lumnar phase is orientationally ordered in the y direction
with the long rectangle axis pointing along the y axis, while
the periodicity of both density and order parameter profiles
�which are in phase� is along the x direction �see Fig. 3�a��.
The mean coexistence packing fractions of the I and C
phases are �I=0.570 58 and �C=0.603 10, respectively,
while the period of the C phase, in units of the HR width,
was found to be dx /�=1.20102. In Fig. 3�b� we have plotted
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the order parameter QN and the period of the columnar phase
as a function of the mean packing fraction.

To compare the different packings of HR particles in the
metastable phases �found as the local minima of the free-
energy density� for a fixed mean packing fraction �=0.7, we
have plotted the density and order-parameter profiles of the
Sm1,2 �Figs. 4�a� and 4�b�� and PS and OS �Figs. 5�a�–5�c��

phases. As can be seen from Fig. 4�a�, the density profile of
the Sm1 phase has two maxima per period. The less pro-
nounced maxima, located at the interstitials, reflect the high
population of particles with long axes oriented parallel to the
smectic layers �see the sketched particle configurations in
Fig. 2�b��. This alignment is also shown in the order-
parameter profile, which reaches high negative values at the
interstitial positions. This phase bears a strong resemblance
to the findings of Refs. �21� and �22� where the particle equi-
librium configurations in the 3D smectic phases show the
same pattern. As a consequence of this �alternating popula-
tion of particles aligned perpendicular—sharpest peak in the
density profile—and parallel to the layers�, the smectic pe-
riod in units of the particle length is dy /L=1.530 25, higher
than the smectic period of the Sm2 phase �dy /L=1.179 35�.
The density and order-parameter profiles of the Sm2 are
shown in Fig. 4�b�. As can be seen from the figure, these
profiles reflect the usual packing in smectics, characterized
by a single density peak with vanishingly small population of
particles in the interstitials, while the order parameter
reaches its maximum value at the position of the smectic
layers �see Fig. 2�c� for the sketched particle configurations�.
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0.2
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FIG. 1. The rescaled free-energy density �*=�+2.9875
−5.8501� is plotted against the mean packing fraction for all stable
and metastable phases found. These are isotropic �dashed line�,
nematic �dotted line�, smectic-1 and smectic-2 �dotted and dashed
lines�, and plastic solid �dashed line labeled as PS�, while the per-
fectly oriented solid and the columnar phases �labeled in the figure
as OS and C, respectively� are plotted with solid lines. The open
circle indicates the isotropic-nematic bifurcation point, the open
square indicates the isotropic-plastic solid bifurcation point, and the
solid circles represent the coexisting packing fractions at isotropic-
columnar phase coexistence.
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FIG. 2. Sketch of particle configurations corresponding to dif-
ferent phases: columnar �a�, smectic-1 �b�, smectic-2 �c�, and plastic
solid �d� phases. The direction of spatial periodicities are labeled in
the figure.
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FIG. 3. �a� Density ��x� �solid line� and order parameter Q�x�
�dashed line� profiles of the columnar phase at coexistence with the
isotropic phase. �b� Order parameter QN and period of the columnar
phase against the mean packing fraction.
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The density and order parameter profiles of the PS phase
with mean packing fraction equal to 0.7 are plotted in Figs.
5�a� and 5�b�. The plastic solid has the same periodicity in
the x and y direction—i.e., dx=dy =d—and the order param-
eter averaged over the unit cell is strictly equal to zero. As
we can see from Fig. 5�b�, while the order parameter at the
nodes of the square lattice is equal to zero, it reaches positive
�negative� values at the �±0.5,0� ��0, ±0.5�� positions along
the sides of the cell �the same solution with the x and y
directions interchanged was found in the minimization of the
free energy�. Finally, the density profile of the perfectly
aligned two-dimensional solid is plotted in Fig. 5�c�.

Although the phases described above are metastable with
respect to the columnar phase, they can be stabilized for
different values of the particle aspect ratio. A detailed study
of the complete phase diagram, necessary to elucidate this
point, is a work in progress.

We now proceed to make a comparison between the re-
sults for the 2D Zwanzig model with �=3 obtained above
and those for hard parallelepipeds with restricted orientations
and the same value of � �23�. This comparison will show the
differences in phase behavior between three and two dimen-
sions as predicted by fundamental-measure theory �which, as
already pointed out, conforms with the dimensional cross-
over criterion�. As shown in Ref. �23�, hard parallelepipeds

exhibit a second-order phase transition between isotropic and
plastic solid phases. As the density increases the system goes
to a discotic smectic phase �confirmed by simulations� via a
first-order phase transition, which in turn discontinuously
changes to a columnar phase and then to an oriented solid.
By contrast, the present model shows that, in two dimen-
sions, the isotropic phase exhibits a first-order transition to a
columnar phase that is stable until very high packing frac-
tions �more stable than plastic, oriented solid, and different
smectic phases�. As a consequence, one expects that the cor-
responding surface phase diagrams will also be different.

B. Surface phase diagram

In this section we deal with surface phenomena. In the
first part we will concentrate on the semi-infinite wall-
isotropic interface of a HR fluid, while in the second part we
will focus on the slit geometry. We will demonstrate the pres-
ence of complete wetting, capillary ordering, and layering
transitions in the confined two-dimensional hard-rod fluid.
For a detailed discussion of general grounds of the phase
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FIG. 4. Density �solid line� and order parameter �dashed line�
profiles of the smectic-1 �a� and smectic-2 �b� metastable phases for
a value of mean packing fraction fixed at 0.7.

(a)

-0.5
-0.25

0
0.25

0.5x/d -0.5

-0.25

0

0.25

0.5

y/d

0

2

4

6
ρa

(b)

-0.5
-0.25

0
0.25

0.5x/d -0.5

-0.25

0

0.25

0.5

y/d

-1

-0.5

0

0.5

1
Q

(c)

-0.5
-0.25

0
0.25

0.5x/dx
-0.5

-0.25

0

0.25

0.5

y/dy

0

2

4

6ρa

FIG. 5. Density �a� and order-parameter �b� profiles of the plas-
tic solid phase. �c� Density profile of the perfectly oriented solid.
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behavior and critical phenomena of a confined by a single
wall fluid see Ref. �24�.

1. Wall-fluid interface

The interaction between the isotropic fluid phase and a
hard wall was studied by calculating the one-dimensional
equilibrium density ��x� and order-parameter Q�x� profiles
through the excess surface free-energy minimization �see Eq.
�16��. The chemical potential 	 of the fluid phase at infinite
distance from the wall was varied within the range of
isotropic-phase stability—i.e., 	� �−� ,	0� �	0 being the
value at which the I-C phase transition occurs�. It is well
known that the presence of a hard wall in a system of elon-
gated particles induces parallel alignment of the particle axes
with respect to the wall �25,26�. This preferential alignment
is a result of the entropic depletion effect. In the parallel
configuration, the centers of mass of the particles are much
closer to the wall, so the gain in volume per particle is larger
and, as a consequence, the configurational entropy of the
system is maximized. This effect is responsible for the oc-
currence of a biaxial nematic phase which breaks the orien-
tational symmetry in a three-dimensional nematic fluid �4�.
The same depletion mechanism is at work in 2D, as we will
show below.

The results from the minimization are shown in Figs. 6�a�
and 6�b� for an undersaturation of 
�	=−1.1�10−4. As we
can see from the figure, the density and order-parameter pro-
files indicate columnar order near the wall, which propagates
several columnar periods into the fluid phase. The wall-fluid
interaction enhances the orientational order near the surface
and the adsorption of particles, creating a structured layer
with columnar-phase symmetry which grows in width with
increasing chemical potential and diverges at 	=	0. Thus,
complete wetting by a columnar phase occurs at the wall-
isotropic interface. This result is shown in Fig. 7�a� where
the excess surface free energy � and the adsorption coeffi-
cient � are plotted against �	=	−	0. As we can see, �
grows continuously, ultimately diverging logarithmically
with �	 �see inset of figure�. The excess surface free energy
� has a maximum, and at this point the adsorption passes
through zero. This result is directly related to the interfacial
Gibbs-Duhem equation �=−d� /d	, which relates the ad-
sorption coefficient with the first derivative of the excess
surface free energy with respect to the bulk chemical poten-
tial. At 	0 the excess surface energy is equal to the wall-
isotropic surface tension �WI, which is in turn equal to the
sum of wall-columnar and columnar-isotropic surface ten-
sions, ��	0�=�WI=�WC+�CI �Young’s equation for complete
wetting�.

We have carried out a logarithmic fit of the adsorption
coefficient with respect to undersaturation 
�	=
�	−	0�,
and we find that ��=�1+�2 ln�
��	��, with �1=0.023 87 and
�2=−0.033 96. Then, integrating the interfacial Gibbs-
Duhem relation �=−d� /d	, we find the expression


�� � 
�WI� − 
�1 + �2�ln�
��	�� − 1��
�	 , �17�

which approximates the excess surface free energy near com-
plete wetting. The above expression is plotted against 
�	

in Fig. 7�b�, where the results from direct calculation of 
��,
using the equilibrium density profiles obtained, are also plot-
ted. As we can see the agreement is excellent even for rela-
tively high values of undersaturation.

To calculate the structural and thermodynamic properties
of the columnar-isotropic interface, we have implemented a
numerical scheme already used in Ref. �27�, consisting of
minimizing the surface excess free energy � in a box of
width h containing a stripe of a few columnar layers sur-
rounded by isotropic material with periodic boundary condi-
tions. h is chosen such that the density profiles can easily
accommodate the two interfaces and go to the coexistence
fluid density at the periodic boundary. A typical result from
this calculation is plotted in Figs. 8�a� and 8�b� for the den-
sity and order-parameter profiles, respectively. Thus, the I-C
interfacial tension can be calculated as half the excess sur-
face free energy resulting from the minimization. We have
found a value of 
�IC�=0.006 72.

Finally, to verify that Young’s law for complete wetting
holds, we need to calculate the surface tension of the wall-
columnar interface. To construct density profiles compatible
with this semi-infinite interface, one has to establish a
boundary at the side of the computational box opposite to the
wall and place, beyond the boundary and into the bulk, a
periodically structured profile, choosing the phase �i.e., the
value of the profile at the boundary� arbitrarily within the
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FIG. 6. Density �a� and order parameter �b� profiles of the wall-
isotropic fluid interface. The undersaturation is fixed to 
�	=
−1.1�10−4.
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bulk period. Although this recipe can in principle be imple-
mented, we have chosen to fix bulk I-C coexistence condi-
tions in a confined columnar phase and calculate the density
profile of the system confined between two walls; the sepa-
ration between the walls was chosen large enough so that the
effects of having a finite interface penetration length caused
by the presence of the confined external potential can be
neglected. Also, in order to ensure that commensurability
effects can be ignored, the distance between the walls was
set to a �large� integer number of equilibrium periods of the
columnar phase. The results from these calculations are plot-
ted in Figs. 9�a� and 9�b�. The W-C surface tension calcu-
lated as half the value of the excess surface free energy re-
sults in 
�WC�=0.131 50, compatible with Young’s law in
conditions of complete wetting of the W-I interface by the
columnar phase.

2. Capillary ordering

This section is devoted to a study of the effect of confine-
ment of a 2D HR fluid on the thermodynamic and structural

properties of the fluid. In particular, we are interested in the
enhancement of the orientational and layering ordering due
to confinement and the commensurability effects exhibited
by a layered phase sandwiched between two hard walls at a
distance that may or may not be commensurate with the
period of the bulk columnar phase. It is well known that,
under certain circumstances �related to the nature of the
fluid-fluid and surface-fluid interactions�, a fluid inside a
pore can exhibit capillary first-order phase transitions be-
tween two different phases at a chemical potential below the
bulk coexistence value. An example of this phenomenon is
the recently studied capillary nematization �4� and smectiza-
tion �8� of a liquid-crystal fluid inside a pore. The bulk con-
densed phase may have uniform �nematic� or nonuniform
density profiles. For the latter case, capillary layering transi-
tions between interfacial phases with different numbers of
smectic layers �8� can also be found. Here we will show that
these capillary and layering phase transitions are not unique
to the 3D system. They are also present in 2D anisotropic
fluids which can stabilize layered phases with different spa-
tial symmetries, such as the columnar phase.

With a view to finding the effects of confinement on co-
lumnar ordering in a HR fluid, we have minimized the excess
surface free energy with respect to the density profile for the
particular case of HR’s with �=3. The fluid is confined by
two hard walls at a distance H /�=30 �in units of the particle
width�. As already pointed out, hard walls favor alignment
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FIG. 7. �a� Excess surface free energy �solid line� and adsorp-
tion coefficient �dashed line�, in reduced units, against 
�	. The
inset shows �� vs 
�	 on a logarithmic scale. �b� Excess surface
free energy vs 
	 in the neighborhood of zero undersaturation. The
open circles show the values obtained from the numerical minimi-
zation, while the solid line represents the analytic curve obtained by
integrating the interfacial Gibbs-Duhem relation with the fitted
logarithmic dependence of the adsorption coefficient �see text�. The
solid circle shows the value of the W-I surface tension 
�WI�
=0.138 22.
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FIG. 8. Density �a� and order-parameter �b� profiles of a numeri-
cal box containing two isotropic-columnar interfaces.
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parallel to the wall, as well as adsorption of particles at both
surfaces �density and order parameters at contact are much
higher than their bulk values�. This coupled translational-
orientational ordering near the surfaces propagates into the
fluid, creating columnar ordering. We have found that for
low values of the chemical potential of the bath the density
profile is structureless �except just at the wall contact�, simi-
lar to the bulk isotropic phase. Increasing the chemical po-
tential several damped columnar peaks appear near the wall
in a continuous fashion—i.e., with their heights increasing
continuously. At some value of the chemical potential, the
system exhibits a first-order phase transition between a phase
with highly damped columnar peaks to a new phase with
much stronger columnar ordering even at the center of the
pore. The typical density and order-parameter profiles of
both interfacial phases are shown in Figs. 10�a�–10�d�. Al-
though the less-ordered phase exhibits strong oscillations in
both density and order-parameter profiles, the peak ampli-
tudes are damped into the pore faster than those of the
higher-ordered phase. We will take the convention to call the
first “isotropic” and the second “columnar” surface phases.
This convention is justified by the fact that, just before the
transition described above, columnar ordering increases con-
tinuously, starting from an isotropic like density profile, as
the chemical potential is increased. Thus we cannot trace out
a definite boundary �a value for 	 below that corresponding
to the first-order phase transition� below or above which the

profile inside the pore can be considered isotropic or colum-
nar. Only the first-order phase transition described above can
really distinguish two different surface phases, one of them
less ordered �following our convention, the isotropic phase�
than the other �the columnar phase�. As we can see in the
figure, the latter has 25 columnar peaks.

The transition point is calculated from the discontinuity in
the first derivative of the excess surface free energy with
respect to the bulk packing fraction �. The corresponding
plot is shown in Fig. 11�a�. At this point the adsorption co-
efficient jumps discontinuously from the less- �the damped
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FIG. 9. The density �a� and order parameter �b� profiles of two
wall-columnar interfaces.
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FIG. 10. Isotropic �a�,�b� and columnar �c�,�d� phases that coex-
ist at the same chemical potential bellow 	0. �a�,�c� Density pro-
files. �b�,�d� Order-parameter profiles.
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columnar� to the higher-ordered phase �see Fig. 11�b��.
This surface transition point is located below the bulk

isotropic-columnar phase transition �see Fig. 11�a��, showing
the presence of columnar-order enhancement in the pore. On
further increasing the chemical potential up to a sufficiently
high value �above 	0�, we find a first-order layering transi-
tion between two interfacial columnar phases which differ by
just a single columnar layer. The behavior of the excess sur-
face free energy and the adsorption coefficient is similar to
that shown in Figs. 11�a� and 11�b�. Alternatively we can find
the transition from n−1 to n columnar layers by fixing the
chemical potential and increasing the pore width H.

The two surface phase transitions described above—
namely, first-order capillary I-C ordering and �n−1�-n layer-
ing transition—are connected in the 	-H surface phase dia-
gram through the peculiar structure shown in Fig. 12.

The parabola below the bulk transition line corresponds to
first-order transition lines separating regions of stability of
the isotropic and the columnar interfacial phases, while the
straight lines indicate layering transitions. Increasing the
chemical potential from low values to those corresponding to
the parabola, the density profiles always change continuously
from a structureless to damped columnar density profile.
Both types of transitions �the isotropic-columnar and �n
−1�-n layering transitions� coalesce in triple points, two of
which are shown in Fig. 12. At the triple points an isotropic
and two columnar interfacial phases with n−1 and n layers
coexist in equilibrium. The set of connected parabolas of Fig.

12 are similar to those found in MC simulations of the con-
fined hard-sphere fluid �2�. In this work the authors have
shown the existence of capillary freezing of the HS fluid,
confined in the slit geometry, for chemical potential values
below the bulk freezing transition. The transitions lines in the
	-H surface phase diagram follow the same topology of the
connected set of parabolas as found in our system.

Some of the topological features of this surface phase
diagram can be elucidated from the Clausius-Clapeyron
equation as applied to the interfacial coexistence lines. The
excess surface free energy ��	 ,H� along coexistence is a
function of two variables: the chemical potential 	 and the
pore width H. Thus, infinitesimal changes in these variables
along the coexistence curve are related through the equation

d�� − d�
 = �� ��

�	
	

H
d	 + �� ��

�H
	

	

dH = 0, �18�

where the coexisting condition ��=�
 �for � ,
=I ,Cn−1 ,Cn�
was used and �u=u�−u
 for any function u. Using the in-
terfacial Gibbs-Duhem equation �� /�	=−� and the defini-
tion of the solvation force f =−�� /�H, we arrive at

d	

dH
= −

�f

��
, �19�

which relates the first derivative of the chemical potential
with respect to the pore width with changes in the solvation
force and in the adsorption coefficient at the transition point.
The negative slope of the layering curves is a direct result of
Eq. �19�, as the increment in the adsorption is always posi-
tive for the �n−1�→n layering transition, while the change
in the solvation force is also positive �the latter can be inter-
preted as an increment with respect to the bulk of the excess
surface pressure, which is obviously larger for the phase with
n layers�. For values of the pore width that commensurate
with an integer number of columnar periods of the bulk co-
lumnar phase, the solvation force becomes zero and we get a
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FIG. 11. Excess surface free energy �a� and adsorption coeffi-
cient �b� against packing fraction of the bulk isotropic fluid. In the
figure at top, the solid circle represents the transition point between
both interfacial phases, while the open square indicates the point
corresponding to the bulk coexistence value for isotropic and co-
lumnar phases.
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minimum in the I-C capillary transition curve �see Fig. 12�.
At each side of the minimum the solvation force changes the
sign to positive �left side� or negative �right side� as we com-
press or expand the film, respectively, while the change in
adsorption remains positive.

The Kelvin equation for capillary condensation in a slit
geometry relates the undersaturation in chemical potential
with pore width H as

�	 = 	�H� − 	0 = −
2��


��� − �
�H
, �20�

where �� and �
 are the bulk coexisting densities of phases �
and 
 �� being the condensed phase�, while ��
 is the sur-
face tension of the corresponding interface. It was assumed
that complete wetting by the � phase occurs at the W-

interface. For a detailed discussion of the Kelvin equation in
the context of liquid-crystal phase transitions see Ref. �28�.
Applying this equation using H /�=28.88 �the location of the
minimum in the 	-H phase diagram of Fig. 12�, we obtain an
undersaturation 
�	=−0.0429, while its real value is 
�	
=−0.1255. In the derivation of the Kelvin equation, devia-
tions from the bulk structure of the density profile arising
from the confinement by the external potential are neglected.
Also, the elastic energy resulting from the compression or
expansion of a layered phase confined between two walls is
not taken into account. These effects might be responsible
for the differences found between our calculations and the
estimation based on the Kelvin equation. We have checked
that the sequence of minima in the 	-H phase diagram tends
to 	0 as H→�, a result predicted by Eq. �20�.

References �4� and �8� showed that the capillary nemati-
zation line of the confined liquid-crystal fluid ends in a criti-
cal point for small values of the pore width. In order to study
how the topology of the surface phase diagram changes in
the regime of small pore widths, we have carried out the
corresponding calculations of interfacial structure. We have
found that the I-C capillary ordering transition changes at
some particular value of H �near its maximum undersatura-
tion represented by the minimum in the I-C interface coex-
isting curve� from first to second order. For lower values of
H two critical points emerge from this single point, the dis-
tance between them increasing. In Fig. 13 one of these sce-
narios is shown. As we can see, there is a range of values of
H �near the triple points� where the first-order capillary or-
dering transitions are still present, but between the critical
points belonging to different layering branches, columnar or-
dering grows continuously from the isotropic �damped co-
lumnar interfacial phase� to a highly ordered columnar
phase. Layering transitions are always present even for very
small H, as will be shown below. An interesting feature of
this phase diagram is that the location of the triple points
moves above the bulk coexistence value 	0. This indicates
that the interfacial columnar phase just below the triple
points can be unstable for values of chemical potentials cor-
responding to those of columnar-phase stability at bulk
�similar to the capillary evaporation of the confined fluid�.
For wide enough slits �those for which the parabolas are
connected� the triple points are practically located at 	0, as
can be observed from Fig. 12.

For even smaller values of H, only layering transitions
remain; these end in critical points located above 	0, as Fig.
14 shows.

When the width H is such that the pore can only accom-
modate one particle with its long axis perpendicular to the
wall �or not more than four or three particles aligned parallel
to the wall� the system is near the one-dimensional limit. It is
known that hard-core systems in this limit do not exhibit
first-order phase transitions, but even for very narrow slits
we can still find first-order transitions at which the density
profile experiences an abrupt change inside the pore. In Figs.
15�a� and 15�b� we show two coexisting density profiles cor-
responding to oversaturations, 
�	=0.517 60 and 
�	
=0.728 36, and pore widths H /�=4.32 and H /�=3.14 in �a�
and �b�, respectively. The fluid inside the pore undergoes a
phase transition, which dramatically changes the structure of
the interfacial density profiles by increasing the height of
four �Fig. 15�a�� or three �Fig. 15�b�� density peaks inside the
pore.

IV. CONCLUSIONS

In this article we have shown that 2D fluids composed of
anisotropic particles interacting via hard-core repulsion and

18 18.5 19 19.5 20 20.5
H/σ

5.5

5.6

5.7

5.8

5.9

6

βµ

C
17

I

C
16

C
15

FIG. 13. 	-H surface phase diagram showing critical points
�solid circles�. Number of columnar layers are indicated as
subscripts.

11.4 11.45 11.5 11.55 11.6
H/σ

7.8 7.85 7.9 7.95 8
H/σ

5.5

5.6

5.7

5.8

5.9

6

6.1

βµ

C
10C

9
C

7
C

6

FIG. 14. 	-H surface phase diagrams for small values of H.

YURI MARTÍNEZ-RATÓN PHYSICAL REVIEW E 75, 051708 �2007�

051708-10



confined in a slit geometry exhibit a complex and rich inter-
facial phase behavior. Apart from first-order capillary colum-
nar ordering, we have also found layering transitions in this
system. These results are similar to those found in 3D liquid-
crystal fluids confined in a pore, where capillary smectization
and layering phenomena were also found �8�. In view of
these similarities, we can extract the conclusion that, inde-
pendent of the system dimensionality and the peculiarities of
the layered phases, either smectic or columnar, if the fluid-
wall interaction enhances layered interface ordering �homeo-
tropic in the case of smectic phases and entropically favored
parallel alignment for the columnar phase�, compatible with
the equilibrium bulk phase, then the confined fluid exhibits
the interfacial phase transitions described above.

In this study we have used as a model a hard-rectangle
fluid, and the density and the order-parameter profiles were
calculated by minimizing the excess surface free-energy
functional resulting from the fundamental-measure theory

applied to the two-dimensional Zwanzig model. The orienta-
tional degrees of freedom were discretized in order to take
advantage of having a free-energy functional which reduces
to the exact one-dimensional functional when the density
profile is constrained to lie along a line. This property is
crucial to study strongly confined fluids �as is the case in this
study�, in particular when the pore width has only a few
particle diameters in width.

As already pointed out in Sec. I, some experiments had
shown profound similarities between particle configurations
obtained as stationary states of systems of anisotropic grains
and those corresponding to the equilibrium states obtained
by density functional minimization �12�. These similarities
can be explained by applying a maximum-entropy principle
on granular collections of particles; i.e., for a fixed packing
fraction, externally induced vibrational motion forces the
system to explore those stationary states which maximize the
configurational entropy �since the grains cannot overlap�. Of
course, equilibrium statistical mechanics is unable to propose
an equation of state for granular matter, but it could be pos-
sible to predict that granular matter composed of anisotropic
particles and confined between parallel walls may support a
stationary texture consisting of layers of particles oriented
parallel to the wall. The manner in which the grain orienta-
tions propagate into the container would depend on the av-
erage packing fraction and on the frequency of the external
force. Only at this qualitative level can we give some insight
into possible complete wetting phenomena and capillary or-
dering in granular rod fluids confined between two horizontal
plates at a distance slightly larger than the particle dimen-
sions in the vertical direction �thus simulating a two-
dimensional system� and also confined by one or two vertical
planes �these playing the role of hard walls�.

Some calculations �not shown here� on the 2D HR fluid
show that, for different aspect ratios, 2D smectic and crystal
phases can be stable over some range of packing fractions. It
would be interesting to explore whether confinement sup-
presses or enhances bulk ordering and to study the changes
in the surface phase diagram when phases of different sym-
metries are included. Work along this direction is currently in
progress.

ACKNOWLEDGMENTS

I thank D. de las Heras, E. Velasco, and L. Mederos for
useful discussions and E. Velasco for a critical reading of the
manuscript. The author gratefully acknowledges financial
support from Ministerio de Educación y Ciencia under Grant
No. BFM2003-0180 and Grant MOSAICO, and from Comu-
nidad Autónoma de Madrid �Grant No. S-0505/ESP-0299�
and Grant No. �UC3M-FI-05-007�. The author was sup-
ported by a Ramón y Cajal research contract from the Min-
isterio de Educación y Ciencia.

0 1 2 3 4 5
x/σ

0

2

4

6

8

ρa
(a)

0 0.8 1.6 2.4 3.2
x/σ

0

1

2

3

4

5

6

ρa

(b)

FIG. 15. �a� Density profiles of two coexisting phases �shown
with solid and dashed lines� at 
�	=0.5176. The pore width is
H /�=4.32. �b� Same as in �a� but for a pore with H /�=3.14 and
for 
�	=0.728 36.

CAPILLARY ORDERING AND LAYERING TRANSITIONS… PHYSICAL REVIEW E 75, 051708 �2007�

051708-11



�1� M. Schmidt and H. Löwen, Phys. Rev. Lett. 76, 4552 �1996�;
Phys. Rev. E 55, 7228 �1997�.

�2� M. Dijkstra, Phys. Rev. Lett. 93, 108303 �2004�; A. Fortini
and M. Dijkstra, J. Phys.: Condens. Matter 18, L371 �2006�.

�3� L. Salamacha, A. Patrykiejew, S. Sokolowski, and K. Binder,
Eur. Phys. J. E 13, 261 �2004�; L. Salamacha, A. Patrykiejew,
and S. Sokolowski, ibid. 18, 425 �2005�.

�4� R. van Roij, M. Dijkstra, and R. Evans, Europhys. Lett. 49,
350 �2000�; M. Dijkstra, R. van Roij, and R. Evans, Phys. Rev.
E 63, 051703 �2001�.

�5� L. Harnau and S. Dietrich, Phys. Rev. E 66, 051702 �2002�.
�6� I. Rodriguez-Ponce, J. M. Romero-Enrique, E. Velasco, L. Me-

deros, and L. F. Rull, J. Phys.: Condens. Matter 12, A363
�2000�; I. Rodriguez-Ponce, J. M. Romero-Enrique, and L. F.
Rull, Phys. Rev. E 64, 051704 �2001�.

�7� R. E. Webster, N. J. Mottram, and D. J. Cleaver, Phys. Rev. E
68, 021706 �2003�; Z. Kutnjak, S. Kralj, G. Lahajnar, and S.
Zumer, ibid. 70, 051703 �2004�.

�8� D. de las Heras, E. Velasco, and L. Mederos, Phys. Rev. Lett.
94, 017801 �2005�; Phys. Rev. E 74, 011709 �2006�.

�9� V. M. Kaganer, H. Mohwald, and P. Dutta, Rev. Mod. Phys.
71, 779 �1999�.

�10� I. S. Aranson and L. S. Tsimring, Rev. Mod. Phys. 78, 641
�2006�.

�11� P. M. Reis, R. A. Ingale, and M. D. Shattuck, Phys. Rev. Lett.
96, 258001 �2006�.

�12� V. Narayan, N. Menon, and S. Ramaswamy, J. Stat. Mech.:
Theory Exp. P01005 �2006�.

�13� Y. Martínez-Ratón, E. Velasco, and L. Mederos, J. Chem.
Phys. 122, 064903 �2005�; 125, 014501 �2006�.

�14� A. Donev, J. Burton, F. H. Stillinger, and S. Torquato, Phys.

Rev. B 73, 054109 �2006�.
�15� A. Fierro, M. Nicodemi, and A. Coniglio, Europhys. Lett. 59,

642 �2002�; Phys. Rev. E 66, 061301 �2002�; A. Coniglio, A.
Fierro, and N. Nicodemi, Eur. Phys. J. E 9, 219 �2002�.

�16� D. S. Dean and A. Lefevre, Phys. Rev. Lett. 90, 198301
�2003�.

�17� J. Galanis, D. Harries, D. L. Sackett, W. Losert, and R. Nossal,
Phys. Rev. Lett. 96, 028002 �2006�.

�18� D. Chaudhuri and S. Sengupta, Phys. Rev. Lett. 93, 115702
�2004�.

�19� Y. Rosenfeld, M. Schmidt, H. Löwen, and P. Tarazona, J.
Phys.: Condens. Matter 8, L577 �1996�; Phys. Rev. E 55,
4245 �1997�; P. Tarazona and Y. Rosenfeld, ibid. 55, R4873
�1997�.

�20� J. A. Cuesta and Y. Martínez-Ratón, Phys. Rev. Lett. 78, 3681
�1997�; J. Chem. Phys. 107, 6379 �1997�.

�21� R. van Roij, P. Bolhuis, B. Mulder, and D. Frenkel, Phys. Rev.
E 52, R1277 �1995�.

�22� J. S. van Duijneveldt and M. P. Allen, Mol. Phys. 90, 243
�1997�.

�23� Y. Martínez-Ratón, Phys. Rev. E 69, 061712 �2004�.
�24� R. Lipowsky, J. Appl. Phys. 55, 2485 �1984�.
�25� A. Poniewierski and R. Holyst, Phys. Rev. A 38, 3721 �1988�.
�26� A. Chrzanowska, P. I. C. Teixeira, H. Ehrentraut, and D. J.

Cleaver, J. Phys.: Condens. Matter 13, 4715 �2001�.
�27� Y. Martínez-Ratón, A. M. Somoza, L. Mederos, and D. E.

Sullivan, Faraday Discuss. 104, 111 �1996�; Y. Martinez, A.
M. Somoza, L. Mederos, and D. E. Sullivan, Phys. Rev. E 53,
2466 �1996�.

�28� T. J. Sluckin and A. Poniewierski, Mol. Cryst. Liq. Cryst. 179,
349 �1990�.

YURI MARTÍNEZ-RATÓN PHYSICAL REVIEW E 75, 051708 �2007�

051708-12


